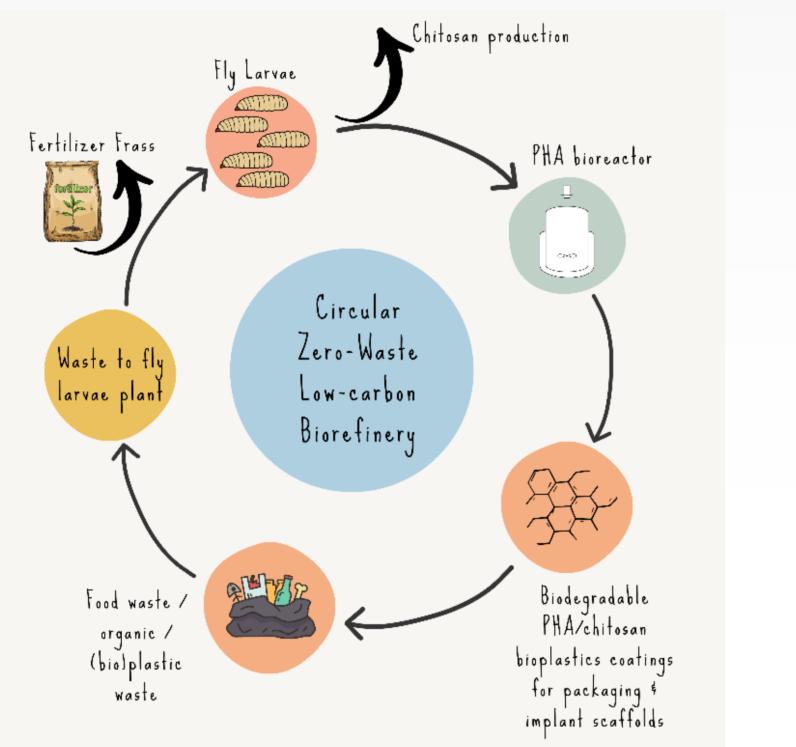
The BioLaMer route to address food waste and petrochemical plastic challenges

Sivakumar Krishnan, Michael A Morris, Sibu C Padmanabhan* Authors:


School of Chemistry, AMBER @CRANN, Trinity College Dublin, Dublin, Ireland Institution:

Research Challenge / Objectives

BioLaMer Project aims to address two major global challenges,

Methodology

- BioLaMer demonstrates the impact O cultivating black soldier fly larvae (Hermetia
- Food Waste challenge, caused due to food discarded at the consumer level and ending up in landfills causing methane emission.
- Petrochemical plastics pollution, being nonplastics and degradable, microplastics accumulate in land, soil, and water bodies, persisting for generations, causing widespread ecosystem pollution.

illucens) using low-grade food waste to generate biopolymers: polyhydroxyalkanoates and chitosan, and value-added (PHA) bioplastics.

- Apply LCA and LCC throughout its feedstock preparation, processing and production steps demonstrate the environmental and to economic sustainability.
- Assess, optimize and validate the biorefinery processes by applying machine learning-based hybrid models.

Impact

- Optimized chitosan production from larvae shells
- **Reduce PHA production cost**

Results

Chitosan from larval shells has been prepared by a series of steps including demineralization, deproteinization, decolourization and deacetylation

The advantage of larvae route are:

- renewable and inexpensive feedstock;
- mitigate FW problems;
- provides less complexity as larvae has almost invariable chemical composition;
- doesn't disturb biodiversity;
- reduce crop-based feedstock;

- Promote biodegradable plastics
- Embrace sustainability
- Reduce carbon footprint
- Zero waste
- Foster circularity
- Economic & societal impacts
- Support Green Deal

Public engagement

BioLaMer research has been communicated through;

- Press releases
- Social media platforms & website (www.biolamer.eu)
- Newsletters
- Workshops & Seminars

- Reduce pre-treatment costs that are associated with other waste-streams to produce the platform chemicals for biopolymer production.
- Public presentations
- Exhibition stalls

*chullans@tcd.ie

HOST INSTITUTION

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

This project has received funding from the European Union's European Innovation Council Pathfinder Open Programme under Grant Agreement No. 101099487.

Advancing Materials for Impact

AMBER