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A B S T R A C T

Many previous studies have explored hybrid semiparametric models merging Artificial Neural Networks (ANNs) 
with mechanistic models for bioprocess applications. More recently, Physics-Informed Neural Networks (PINNs) 
have emerged as promising alternatives. Both approaches seek to incorporate prior knowledge in ANN models, 
thereby decreasing data dependency whilst improving model transparency and generalization capacity. In the 
case of hybrid semiparametric modelling, the mechanistic equations are hard coded directly into the model 
structure in interaction with the ANN. In the case of PINNs, the same mechanistic equations must be “learned” by 
the ANN structure during the training. This study evaluates a dual-ANN PINN structure for generic bioreactor 
problems that decouples state and reaction kinetics parameterization. Furthermore, the dual-ANN PINN is 
benchmarked against the general hybrid semiparametric bioreactor model under comparable prior knowledge 
scenarios across 2 case studies. Our findings show that the dual-ANN PINN can level the prediction accuracy of 
hybrid semiparametric models for simple problems. However, its performance degrades significantly when 
applied to extended temporal extrapolation or to complex problems involving high-dimensional process states 
subject to time-varying control inputs. The latter is primarily due to the more complex multi-objective training of 
the dual-ANN PINN structure and to physics-based extrapolation errors beyond the training domain.

1. Introduction

Due to the intricate mechanistic complexity of cell culture systems, 
developing predictive models for optimization and control at an 
acceptable cost remains a challenge in the bioprocessing industries 
(Hong and Braatz, 2021). Traditional modelling approaches involve 
mathematical equations derived from first principles, including mass 
and energy balances, reaction kinetics, and transport phenomena. While 
these models can elucidate numerous aspects of process behaviour, their 
development is time-consuming and requires extensive domain knowl
edge. Furthermore, these models are inherently limited in their capacity 
to represent the global characteristics of most biological systems in 
specific application scenarios, and the efficiency of their solution is 
significantly lower than theoretically possible (Glassey et al., 2011; Van 

Impe et al., 2013).
In recent years, data-driven modelling has received significant 

attention leveraging on technical progress in data acquisition and pro
cess analytical technology. Particularly deep artificial neural networks 
(deep ANNs) are increasingly considered for bioprocess modelling due 
to their ability to infer intricate patterns from data with minimal domain 
knowledge requirements (Helleckes et al., 2023). However, their de
pendency on high-quantity and high-quality data, which are often 
scarce, and their limited generalization capability constitute major 
drawbacks (Kipf et al., 2018). To mitigate these limitations, hybrid 
modelling approaches have emerged that combine ANNs and mecha
nistic modelling in a common workflow. The most frequently reported 
approach is hybrid semiparametric modelling, wherein ANNs and 
mechanistic equations are interlinked in a common model structure, 
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thereby enhancing the model’s accuracy and transparency (Psichogios 
and Ungar 1992; Thompson and Kramer, 1994; Schubert et al., 1994; 
Oliveira, 2004; Teixeira et al., 2007; Kadlec et al., 2009; Von Stosch 
et al., 2014b). Numerous application examples have demonstrated the 
effectiveness of hybrid semiparametric modelling for bioreactor systems 
(e.g., Pinto et al., 2022; Narayanan et al., 2023; Bayer et al., 2023; 
Ramos et al., 2024). A common path involves using intensified Statis
tical Design of Experiments (iDoE) in combination with hybrid model
ling to dynamically infer the impact of critical process parameters (CPP) 
on critical quality attributes (CQA) (Von Stosch et al., 2014a). These 
methods not only help optimize process conditions but also reduce 
experimental runs, thus saving both time and resources. As a result, 
process engineers can achieve more reliable, scalable, and precise out
comes thereby enhancing overall productivity in industrial applications 
(Smiatek et al., 2020).

A recent addition to bioprocess modelling is Physics-Informed Neural 
Networks (PINNs). PINNs incorporate a system’s known governing 
physical law, usually described by partial differential equations (PDEs) 
or ordinary differential equations (ODEs), into the training process of a 
deep neural network (DNN) (Raissi et al., 2019). The training minimizes 
two loss functions simultaneously, a data loss function based on process 
observations, and a physics loss function derived from physics equa
tions. Unlike conventional DNNs, PINNs can handle complex problems, 
where precise data collection is difficult due to real-world measurement 
limitations. PINNs and hybrid semiparametric models are thus related 
concepts with similar goals, i.e. the integration of prior process knowl
edge in ANN models thereby reducing data dependency. Whereas in 
semiparametric modelling the physics equations are hard coded directly 
in the model structure, in the case of PINNs the same physics equations 
are embedded in a physics loss function that is minimized during the 
training. The general principle of a PINN was already postulated in the 
early study by Thompson and Kramer (1994) who categorized hybrid 
modelling as design methods, where prior knowledge is hard coded in 
the model structure, and training methods where, prior knowledge is 
embedded in the training loss function. Since the pioneering study by 
Raissi et al. (2019), PINNs are taking the first steps in the bioprocess 
modelling field. Due to their similarities, hybrid semiparametric 
modelling and PINNs are sometimes interchangeably referred to in the 
literature (e.g., Bangi et al., 2022; Cui et al., 2024). Adebar et al. (2024)
recently proposed a PINN approach for mammalian cultivations using 
truncated Taylor series expansions to approximate growth kinetics. 
Simplifications such as pseudo-first-order kinetics and decoupled indi
vidual process outcomes were introduced. Despite the simplifications, 
they successfully modelled with reasonable accuracy the dynamics of 
key variables such as viable cell density, glucose, lactate, and product. In 
a different study, Li et al. (2024) developed a complex PINN framework 
using the multi-stage Koopman method for microbial growth modelling. 
The Koopman method served to map the process dynamics into a 
high-dimensional linear space and to model each growth stage sepa
rately in the linear space. Yang et al. (2024) compared parallel hybrid 
modelling, serial hybrid modelling, and PINNs in a pilot fed-batch CHO 
culture. They applied the multiple-shooting method to divide the culture 
into 24-hour intervals with constant feed. Their results suggested that 
PINNs have superior predictive power than the widely adopted semi
parametric approaches. Moayedi et al. (2024) compared a Recurrent 
Neural Network (RNN) with a recurrent PINN in a simulation case study 
with 2 continuous reactors connected in series. They used the Euler 
method to approximate the derivatives of state variables to evaluate the 
physics loss function. They concluded that the PINN outperformed the 
conventional RNN. Jul-Rasmussen et al. (2025) recently presented a 
comparative study of hybrid semiparametric modelling and 
physics-informed recurrent neural networks (PIRNNs) for a pilot-scale 
bubble column aeration process. The study compared each approach 
in terms of training ease, adherence to governing equations, prediction 
accuracy with less frequent measurements, and performance with 
limited data. Their study found that hybrid semiparametric modelling 

outperformed the recurrent PINN approach for the pilot-scale bubble 
column aeration process.

PINNs have gained significant traction in scientific computing, but 
their advantages and development opportunities for bioprocess appli
cations need more evidence. Typical problems arising with PINNs are 
the choice of the ANN structure, handling time-varying control inputs, 
enforcing initial condition (IC), and convergence of the multi-objective 
loss function, which combines physics, data, and IC constraints. One 
critical issue in PINN training is the trade-off between data loss and 
physics loss, which directly influences model convergence. In this study, 
we evaluate a dual-ANN PINN structure for bioreactor problems that 
decouples the parametrization of dynamic state variables and static re
action kinetics. The first ANN parameterizes dynamic state variables as 
function of time, initial conditions and control inputs. The second ANN 
parametrizes static reaction kinetics variables as function of state vari
ables and control inputs. This dual-ANN PINN structure is generally 
applicable to stirred-tank bioreactor problems under time-varying and 
batch-varying control inputs. This structure is evaluated across 2 case 
studies and compared with the general bioreactor hybrid model 
(Oliveira, 2004; Pinto et al., 2022). The remainder of this paper is 
organized as follows: Section 2 details the methodological framework, 
including the dual-ANN PINN structure and training strategies. Section 3
introduces the case studies, encompassing both simple and complex 
bioreactor problems. Section 4 presents the modelling results and 
comparative performance analysis. Section 5 provides a discussion of 
the findings in the context of current literature. Finally, Section 6 pre
sents the main conclusions.

2. Methods

2.1. Dual-ANN PINN structure for bioreactor systems

The state-space equation of a perfectly mixed stirred tank bioreactor 
takes the following general form, 

dC
dt

= Sr(C, u) − DC + DCin , C(0) = C0, (1a) 

where C is a (n × 1) state vector of concentrations of relevant 
biochemical species, S is a (n×m) matrix of yield coefficients, r(C, u) is a 
(m × 1) vector of biological reaction kinetics, D = F/V is the dilution 
rate (for simplicity we consider the liquid volume, V, to be controlled by 
a single feed stream with flow rate, F), Cin is a (n× 1) vector of con
centrations in the feed stream and t is the independent variable time. 
The overall material balance equation for constant liquid density and a 
single feed stream is defined as, 

dV
dt

= F, V(0) = V0. (1b) 

Based on the bioreactor state-space Eqs. (1a,b), a dual-ANN PINN 
structure is outlined under the assumption that the reaction kinetics 
term is unknown, i.e., there are no defining equations for the term r(C, u)
(Fig. 1A). This PINN structure is composed of a state parameterization 
feed-forward neural network (FFNN-S) and a reaction kinetics feed- 
forward neural network (FFNN-R). The rationale behind this dual- 
ANN structure is to decouple the parameterization of dynamic state 
variables over time and reaction kinetics as functions of state variables. 
This modular design reflects the underlying structure of the process and 
enhances the model’s generalization capacity, as further elaborated in 
the results section.

Both network structures are multi-layered FFNNs with an input 
layer, one or more hidden layers (to capture the complex interactions 
and nonlinearities in the system), and an output layer: 

y = σ (WLσ (WL− 1 σ (W1x+ b1)+ bL− 1) + bL, (2) 

where y is a vector of outputs, x is a vector of inputs, Wi is a matrix of 
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weights of the ith layer, bi is a vector of bias parameters and σ is the 
activation function.

Following the structure of Eq. (2), the FFNN-S is implemented as a 
one-step predictor. It receives as inputs the state variables, C(t − Δt), the 
control inputs u[t− Δt,t] (which are constant over time intervals [t − Δt,t]), 
and time step, Δt. The time step, Δt, might not be constant due to het
erogeneous data sparsity. When constant, it may drop from the FFNN-S 
inputs. The predicted concentrations are computed from the neural 
network outputs as follows: 

C(t) = C(t − Δt) + y(t)Δt. (3) 

Eq. (3) ensures that C(t) = C(t − Δt) when Δt = 0, which eliminates 
the need for initial boundary conditions in the loss function used to train 
the PINN. Automatic differentiation (AD) is applied to compute dC /dt, 
which is required in the physics loss function. The second neural 
network, FFNN-R, computes the reaction kinetics at the current time, 
r(t) = y(t), as a function of concentrations at the current time, C(t), and 
of control inputs at the current time, u(t). The outputs of the PINN are 
thus C(t), r(t) and dC/dt. These are used to calculate the data loss and 
physics loss terms. Of note, the prior knowledge of the material balance 
equation is not directly embedded in the model structure but is rather 
used to compute the physics loss term.

2.2. Hybrid semiparametric model for bioreactor systems

This study compares the dual-ANN PINN with the more traditional 
hybrid semiparametric approach. Here we follow the previously pub
lished general bioreactor hybrid model concept (Oliveira, 2004; Pinto 
et al., 2022) applied in many different studies. The hybrid semi
parametric model Fig. (1B) contains a single neural network that models 
the reaction kinetics as a function of the concentrations of species and 
control inputs. This network parallels the FFNN-R of the dual-ANN PINN 
structure. The calculated reaction kinetics pass to a system of ODEs 
derived from the material balance equations. This is a fundamental 
difference to the dual-ANN PINN structure, as the prior knowledge ODEs 
are hard-coded directly in the model structure. The ODEs are 

numerically integrated over time intervals [t − Δt, t] from initial condi
tions, C(t − Δt) to the current concentrations, C(t). The integration was 
done numerically with a Runge-Kutta 4th order method (RK4). This is 
another fundamental difference to PINNs, as the hybrid semiparametric 
approach requires integration whereas the PINN approach requires 
differentiation. However, it is important to note that the discretization of 
the process to match sampling time steps can impact the derivative 
approximation and overall solution accuracy, as highlighted by Cruz-
Bournazou et al. (2022). Comparing computed and measured concen
trations results in a data loss that is minimized during the.

2.3. Training methods

To ensure comparability, the training, validation and testing 
methods were identical for both modelling approaches, except for the 
calculation of the loss function which is intrinsically different in both 
approaches. The standard Adaptive Moment Estimation Method 
(ADAM) was applied to minimize the total loss. Specifically, the stan
dard ADAM method described in Kingma and Ba (2014) was applied. In 
the case of the PINN structure, a loss function with two terms is mini
mized. The data loss term is computed as the weighted mean squared 
error (WMSE) as follows, 

L data =
1

N × M
∑N

i=1

∑M

j=1

(C∗
i,j − Ci,j

σCj

)2

, (4) 

where N is the number of observations, M is the number of biochemical 
species, C∗

i,j and Ci,j are the measured and model predicted concentra
tions, respectively, of biochemical species j at time instant i, and σCj is 
the standard deviation of the concentration of biochemical species j over 
the set of observations. The physics loss is computed as follows: 

e =
dC
dt

− Sr + DC − DCin, (5a) 

Fig. 1. Schematic diagram of hybrid model structures for a generic stirred-tank bioreactor system. (A) Dual-ANN PINN structure where physical equations are 
embedded in the training loss function, (B) Hybrid semiparametric structure where physical equations are hard-coded directly in the model structure.
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L physics =
1

K × M
∑K

i=1

∑M

j=1

(
Δt ei,j

σCj

)2

, (5b) 

where K represents the number of collocation points and ei,j is the 
physics residual of biochemical species j at collocation point i. The 
number of collocation points does not coincide with the number of ob
servations. A random collocation method was employed to distribute 
these points across the domain space. Furthermore, it was ensured that 
the total number of residuals, (N + K) M, is always higher than the total 
number of weights of the dual-ANN PINN structure. Finally, the total 
loss is computed as a weighted sum of the two loss terms: 

L total = (1 − λ)L data + λ L physics. (6) 

The parameter λ is set by the user between 0 and 1 to adjust the 
relative importance of the physics and data loss terms. For the hybrid 
semiparametric structures, the physics loss term drops, thus the total 
loss is simply given as L total = L data.

The computation of gradients is a critical step for the success of both 
modelling methods. In the hybrid semiparametric case, sensitivity 
equations are often applied (Oliveira, 2004; Pinto et al., 2022). How
ever, for comparability, the automatic differentiation method imple
mented in the python package PyTorch (Baydin et al., 2018) was applied 
in both modelling approaches.

The data was partitioned consistently for both the PINN and semi
parametric structures to ensure comparability. Specifically, the dataset 
was divided into training, validation, and testing subsets, with the spe
cific partitioning varying across case studies. To reduce overfitting, 
standard cross-validation was adopted in case study 1, while in case 
study 2 a mini-batch stochastic regularization scheme was employed 
following Pinto et al. (2022) (further details are provided in Section 3). 
When comparing different PINN models, the selection of the best model 
was based on the total test loss considering both the data and physics 
loss terms. When comparing different model types, the selection of the 
best model was based on the test data loss term only.

All methods reported in this study were implemented in Python 
3.11.5. The results were obtained using Windows 11 Pro on a PC with an 
Intel Core i9 CPU with 32 GB RAM.

3. Case studies

3.1. Case study 1 - logistic biomass growth in a fed-batch bioreactor

Case study 1 is a very simple logistic growth process in a fed-batch 
bioreactor with only 2 state variables described by two ODEs, Eqs. 
(7a,b), and the logistic growth model, Eq. (7c): 

dX
dt

= μX − DX, (7a) 

dV
dt

= F, (7b) 

μ = μmax

(

1 −
X

Xmax

)

, (7c) 

where X is the biomass concentration, V is the liquid volume, μ is the 
specific growth rate, F is the feed rate into the reactor, D = F /V is the 
dilution rate, μmax is the maximum specific growth rate, and Xmax is the 
maximum biomass concentration. Synthetic experiments were simu
lated dynamically using a Runge-Kutta 4th/5th order ODE solver with 
μmax = 0.3 h− 1 and Xmax = 47.3 g/L. Data points were sampled with 1- 
hour intervals and 5 % Gaussian noise (5 % of true value). A central 
composite design (CCD) with 3 factors (initial biomass concentration 
ranging from 0.5–2.5 g/L, initial volume ranging from 1.9–3.5 L, and 
feed rate, F, ranging from 0.05–0.5 L/h) yielded a data set comprising 15 
experiments. Given the underlying simplicity, the main objective in this 

case study was to evaluate whether training the models on data from a 
single fed-batch experiment could effectively capture the underlying 
process dynamics. As such, the data partition consisted of a training 
subset with a single reactor experiment (the CCD center point corre
sponding to 24 observations), cross-validation with a single reactor 
experiment (a repetition of the center point experiment corresponding 
to 24 observations) and validation and testing with the remaining 14 
experiments (336 observations). Details of the data set and respective 
partition are provided in Supplementary File 1.

3.2. Case study 2 – Park & Ramirez fed-batch bioreactor

Case study 2 involves a highly nonlinear fed-batch bioreactor of 
yeast cells expressing a foreign protein. The process is characterized by 
five state variables and time-varying input feed rate (Park and Ramirez, 
1988). The state variables are the biomass concentration (X), glucose 
concentration (S), secreted protein concentration (Pm), total protein 
concentration (Pt), and liquid volume in the reactor (V). The bioreactor 
is governed by the following set of material balance equations: 

dX
dt

= μX − DX, (8a) 

dS
dt

= − YμX + D(Sin − S), (8b) 

dPm

dt
= θ(Pt − Pm) − DPm, (8c) 

dPt

dt
= fpX − DPt , (8d) 

dV
dt

= F (8e) 

This process has a single feed stream with flow rate, F, and substrate 
concentration, Sin = 20 g/L. The specific reaction rates are defined by 
highly nonlinear kinetic equations: 

μ =
21.87 S

(S + 0.4)(S + 62.5)
, (9a) 

θ =
4.75μ

0.12 + μ, (9b) 

fp =
Se− 5.0S

0.1 + S
, (9c) 

where μ is the specific growth rate, Y is the substrate/biomass yield 
coefficient, θ is the foreign protein secretion rate, and fp is the foreign 
protein synthesis rate. A total of 16 experiments were simulated across a 
0–15 h time window, always with the same initial condition (X(0) =

1.0g/L, (0) = 5.0g/L, Pt(0) = 0g/L, Pm(0) = 0g/L, V(0) = 1.0L) but 
with varying feed rate, F, time profiles. Fifteen experiments were 
designed by a three-factor CCD. The factors were step changes in the 
feed rate over time, defined as follows: feed rate between 0 and 5 h (F1), 
feed rate between 5 and 10 h (F2) and feed rate between 10 and 15 h 
(F3). Each factor was varied between 0 and 2 L/h. The 9 experiments 
corresponding to the CCD cube and center points were used for training 
with embedded stochastic regularization. The 6 experiments corre
sponding to the CCD star points were used for validation. A 16th 
experiment was simulated using the optimal control feed rate profile 
that delivers the maximum possible secreted protein in a 10 L bioreactor 
(32.4 g) (Park and Ramirez, 1988). This optimal control experiment was 
used as a test experiment. A Runge-Kutta 4th/5th order ODE solver was 
adopted for process simulation. Data points were sampled with 1-hour 
intervals and 5 % Gaussian noise (5 % of true value). Details of the 
data set and respective partition are given in Supplementary File 2.
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4. Results

4.1. Development of a bioreactor PINN model for case study 1

The dual-ANN PINN structure was thoroughly investigated for both 
bioreactor case studies, starting with the simpler logistic growth fed- 
batch reactor problem. The key objective was to evaluate the PINN 
approach under conditions of high data sparsity by training it with data 
from a single experiment (24 observations) and validation and testing it 
with data from the remaining 14 experiments (336 observations). The 
data partition was kept the same across all trials. The prior knowledge 
used to compute the physics loss included the biomass and volume 
material balances, Eqs. (7a,b), but excluded the logistic growth rate law, 
Eq. (7c). The data loss included biomass but excluded volume mea
surements. This was intentional to evaluate whether the PINN could 
predict unmeasured volume dynamics given that the physics loss term 
includes Eq. (7b), which precisely defines volume dynamics.

To optimize the PINN structure, a systematic hyperparameter search 
was conducted using Optuna (Akiba et al., 2019), an automated 
framework employing Bayesian optimization and the Tree-structured 
Parzen Estimator (TPE) algorithm. The optimization targeted key 
hyperparameters, including the learning rate, activation functions in 
both networks (tanh, SiLU, and gelu), number of layers (n_layers), nodes 
(n_units) in FFNN-S, and nodes in FFNN-R (model2_nodes; a single 
hidden layer was kept given the simplicity of the unknown kinetic term 
defined by Eq. (7c)) over 25 trials. At this stage, the pre-optimized 
weighting parameter, λ = 0.5, and number of collocation points, K, 
equivalent to the size of FFNN-S (K = NWS) were excluded from the 
hyperparameter search (further discussed below). Fig. 2 depicts a par
allel coordinate plot of Optuna’s search, where lines represent trials and 
color indicates objective value. Optuna converged to an optimal 
dual-ANN PINN configuration with FFNN-S sized as 3 × 12×12×12×2 
with SiLU activation in the hidden layers, FFNN-R sized as 1 × 3 × 1 
with tanh activation in the hidden layer, and a learning rate of 0.005. 
This configuration achieved a total training loss of 0.002 and a total 
validation loss of 0.007.

The automated search was further refined by a manual grid search of 
key hyperparameters. The SiLU and tanh activation functions derived 
from Optuna were kept but the sizes and learning rate were further 
investigated in the manual grid search. Detailed performance metrics for 
each PINN variation are presented in Table S1 of Supplementary File 3. 
The manual refinement converged to an optimal PINN structure (FFNN- 
S: 3 × 8 × 8 × 8 × 2 with SiLU, FFNN- R: 1 × 5 × 1 with tanh) and a 
learning rate of 0.0075. The slightly higher learning rate was shown to 
accelerate convergence without compromising performance. This 
configuration achieved the same training (0.002) and validation (0.007) 

total loss of Optuna, but with a lower number of weights.
Fig. (3A–D) illustrates the predictive capability and adherence to 

physics constraints of the selected PINN structure for case study 1. 
Fig. (3A) and (3B) show the model’s performance on the training and 
validation experiments, respectively. The coefficient of determination 
for both biomass (X) and volume (V) is high and comparable for the train 
and validation data subsets. Moreover, the final train data loss was 
0.0046, practically coincident with the noise level (0.0049), showing 
negligible overfitting. The final validation data loss was 0.013, almost 
twofold the noise level (0.007), but even so very low.

Fig. (3C) depicts the model’s adherence to the underlying physical 
laws at randomly generated collocation points. These points were 
sampled throughout the design space (biomass, volume, and feed rate) 
to enforce the physical constraints across the relevant operational range. 
At each training epoch, a different set of collocation points was 
randomly generated within the known bounds to ensure a comprehen
sive coverage of the design space. The FFNN-S output derivatives (dX/dt 
and dV/dt) were computed at the collocation points by automatic dif
ferentiation and then compared against the derivative values of the 
governing differential equations, Eqs. (7a,b). The strong linearity 
observed in the derivative parity plot of Fig. (3C) highlights the model’s 
ability to accurately satisfy the governing differential equations. In 
addition, Fig. (3D) extends the physics adherence analysis to the vali
dation data points showing that the physics constraints are also obeyed 
in the validation data space.

Overall, these results show that the dual-ANN PINN succeeded in 
describing the biomass and volume dynamics in all validation experi
ments using training data from a single experiment. Notably, the pre
diction of volume dynamics relied solely on the embedded physics law, 
Eq. (7b). This simple example demonstrates that when full and precise 
physics of a subset of state variables are known, observations of those 
state variables are in principle not needed to train the PINN. This 
highlights a key advantage of PINNs over conventional neural networks 
since the latter always need data for their training.

4.2. Development of a bioreactor PINN model for case study 2

The dual-ANN PINN framework was applied to the more complex 
Park and Ramirez (1988) fed-batch bioreactor benchmark, which has a 
higher dimensionality of state variables (biomass (X), substrate (S), total 
protein (Pt), secreted protein (Pm), and volume (V)), highly nonlinear 
kinetics and time-varying control inputs. The key objective was to 
evaluate whether a PINN trained on a sparse data set (9 out of the 15 
CCD experiments) could accurately predict the optimal production 
scenario deduced by Park and Ramirez (1988) (32.4 g of secreted pro
tein when the optimal feed profile is applied). The physics loss included 

Fig. 2. Optuna hyperparameter search results: Parallel coordinate plot showing the relationship between hyperparameters and objective function values for case 
study 1 over 25 trials.
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the material balance equations of the 5 state variables, Eqs. (8a-e), and 
excluded the reaction kinetics, Eqs. (9a-c). The same collocation points 
scheme of case study 1 was applied. The data loss included measure
ments of all state variables except volume (X, S, Pt , and Pm). The volume 

training relied exclusively on the physics loss term (based on Eq. (8e)) as 
in case study 1. The CCD center and square experiments (9) were used 
for training whereas the CCD star experiments (6) were used for vali
dation. Overfitting was minimized by stochastic regularization whereby 

Fig. 3. Training results for case study 1 using a PINN structure (FFNN-S: 3 × 8 × 8 × 8 × 2 with SiLU, FFNN- R: 1 × 5 × 1 with tanh) trained with a learning rate of 
0.0075, λ = 0.5 and K = 194 collocation points. (A) Predicted versus measured biomass and volume data for the training set, (B) Predicted versus measured biomass 
and volume data for the validation set, (C) Biomass and volume physics at the training collocation points, (D) Biomass and volume physics at the validation 
data points.
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6 out of 9 training experiments were randomly selected to compute the 
training data loss at each epoch. Building on the optimal dual-ANN PINN 
structural features already identified for case study 1, a manual grid 
search of the optimal FFNN-S and FFNN-R sizes was conducted as 
detailed in Table S2 of Supplementary File 3. This procedure converged 
to the optimal structure (FFNN-S: 6 × 17×17×5 with SiLU, FFNN-R: 1 ×
6 × 3 with tanh). Fig. (4A–D) show the training, validation and testing 
performance of the selected dual-ANN PINN. A strong agreement be
tween predicted and measured values across all five state variables is 
observed for the training data set (Fig. 4A). Notably, the coefficient of 
determination (R2) exceeded 0.99 for all state variables showing 
excellent training performance. However, the model’s generalization to 
the test experiment degraded significantly (Fig. 4B). The (R2) values for 
X (0.95), S (0.90), and V (0.95) remained relatively high, but a signifi
cant performance degradation was observed for Pt (0.58) and Pm (0.68). 
The parity plot of Fig. (4C) illustrates the PINN’s adherence to the un
derlying physical laws at randomly generated collocation points. The 
close alignment along the diagonal confirms a high level of adherence to 
the physics constraints. However, the generalization of physics equa
tions to the test data points is severely compromised (Fig. 4D), partic
ularly those associated with protein dynamics (Pt and Pm), which exhibit 
a significant scatter.

The Park and Ramirez (1988) problem clearly poses a greater chal
lenge for the PINN’s ability to generalize than in case study 1. Given the 
excellent training performance, the degradation of predictive power 
could be caused by insufficient information content in the training set. 
To test this hypothesis, the selected PINN structure was retrained using 
the full CCD data set (the center, square, and star points of the CCD; 15 
experiments). Stochastic regularization was adjusted to randomly 
selected 10 out of 15 experiments for the calculation of the training data 
loss at each epoch. The overall results are shown in Fig. (4E, F). Indeed, 
augmenting the training set significantly improved the testing perfor
mance. As before, the PINN succeeded in describing the full training 
data set, with R2 higher than 0.99. The augmented training set likely 
provided a more comprehensive data coverage enabling the PINN to 
more accurately learn the intricate nonlinearities. Despite the tenfold 
decrease in the test data loss (from 0.133 to 0.0128), some scatter per
sists with a few predictions laying outside the 5 % error bound, sug
gesting there is still room for improvement (further to this in the 
comparison with the hybrid semiparametric model below).

4.3. Training convergence

The training of PINNs is complicated by the need to simultaneously 
minimize the training and physics loss terms. This study followed the 
most common approach whereby a total loss function, defined as the 
weighted sum of physics and data loss terms, Eq. (6), is minimized. In 
this approach, it is critically important that both loss terms are correctly 
normalized. Fig. (5 A, B) elucidates the training convergence behavior of 
the selected dual-ANN PINN structures for case studies 1 and 2, which 
include the evolution of the data loss, physics loss, and total loss across 
training epochs.

In both cases a stable although noisy convergence behavior is 
observed, characterized by a rapid initial decline in the total loss func
tion, encompassing both data and physics losses, followed by a pro
longed plateau at low loss values. In case study 1, stochasticity is 
introduced in the physics loss function via the random selection of 
collocation points, which propagates to the data loss function via the 
update of neural network parameters. In case study 2, stochasticity 
originates from both the physics loss (random collocation points) and 
data loss (random experiments to compute the data loss). The physics 
loss term tends to plateau always below the data loss term. This is 
explained by the random experimental error that is intrinsic to the data 
residuals but absent in the physics residuals. Importantly, the data loss 
terms plateaus close to the WMSE noise level (0.0049 for case study 1 

and 0.013 for case study 2) showing that in both cases overfitting was 
successfully mitigated.

4.4. Relative importance of data and physics loss

The weighting parameter, λ, sets the relative importance of the 
physics loss (λ) and data loss (1 - λ ). The choice of λ may significantly 
influence the training convergence and overall model performance. The 
results above assumed equal importance of physics and data loss terms 
(λ = 0.5). Fig. (6A) shows the effect of λ on the final training and vali
dation losses for the selected dual-ANN PINN structure for case study 1. 
At λ = 0.0, the physics loss is not minimized thus the PINN becomes 
analogous to a conventional neural network model. As expected, with λ 
= 0.0 the PINN succeeded in describing the training data (low final data 
loss). However, the validation loss was the highest among all runs per
formed. This highlights the importance of “physics learning” for the 
PINN’s ability to extrapolate to unseen observations. As λ increases from 
0.25 to 0.9, a clear decrease trend in the training and validation physics 
loss is observed. Notably, this is accompanied by a decreasing trend in 
the validation data loss denoting synergies between physics and data 
learning. Setting λ = 0.5 resulted in the lowest loss values, thus 
providing the optimal trade-off between data and physics loss terms. 
Fig. (6B) shows similar results for the selected dual-ANN PINN structure 
of case study 2. As in the previous case, a weighting factor of λ = 0.5 
yielded the optimal balance between data and physics loss minimiza
tion. All in all, these results highlight the synergy between the data and 
physics learning components in the PINN framework. Learning physics 
is shown to be critically important for the PINN’s extrapolation capacity, 
proving a clear advantage over conventional neural models, as further 
discussed below.

4.5. Effect of collocation points

The number of collocation points (K) directly influences the physics 
loss minimization and indirectly the training convergence and overall 
model metrics. In this study, the number of collocation points was set as 
multiples of the number of weights of the FFNN-S (NWS). Choosing 
K/NWS ≥ 1 thus provides a sufficient number of physics residuals to 
train FFNN-S even when no data points are available. Increasing the 
K/NWS ratio could in theory positively influence the training and vali
dation metrics. Fig. (7A, B) shows the effect of the ratio K/NWS = 1, 2,
3 on the training and validation loss terms for the selected dual-ANN 

PINN structures of case studies 1 and 2. As anticipated, increasing 
K/NWS generally reduces the training and validation physics loss term, 
with, however, a more marked improvement in case study 1 than in case 
study 2. The physics loss reduction is, nevertheless, not reflected in the 
data loss terms, which seem to be relatively insensitive to the K/NWS 
ratio. It was concluded that a K/NWS = 1 is sufficient for achieving 
robust model convergence. Importantly, the computational cost (CPU) 
escalates linearly with K/NWS. Consequently, a ratio of 1 presents an 
optimal balance between model accuracy and computational efficiency. 
For this reason, a value of K/NWS = 1 was used in all trials conducted in 
the present study.

4.6. Comparison between single- and dual-ANN PINN models

While most of previously published studies addressed single-ANN 
structures (e.g. Raissi et al., 2019; Wang et al., 2021, 2022; Yang 
et al., 2024; Jul-Rasmussen et al., 2025) the present study focuses on a 
dual-ANN PINN structure. To elucidate this aspect in a bioreactor 
modeling context, dual-ANN PINN structures were systematically 
compared with single-ANN PINN structures where all state variables and 
kinetic rates are computed by a single FFNN. To ensure a fair compar
ison, models with equivalent sizes (number of hidden layers and number 
of nodes) were subject to identical training, validation, and testing 
processes. Detailed performance metrics for every single-ANN PINN 
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structure investigated are given in Tables S1 and S2 of Supplementary 
File 3 for case studies 1 and 2 respectively.

Fig. (8A, B) show the obtained results in terms of data, physics and 
total loss ratios (single-ANN PINN) / (dual-ANN PINN) for structures 
with equivalent sizes. In case study 1 (Fig. 8A), the training loss ratio 
medians are close to 1, indicating that single- and dual-ANN PINNs of 
comparable sizes achieve similar training performance. However, a 
notable difference is observed in the validation dataset, where the loss 
ratio is significantly greater than 1, especially for the data loss and total 
loss components. Fig. (8B) extends the loss ratio analysis to the more 
complex case study 2. The differences between the single- and dual-ANN 
PINNs are not so straightforward in this case. The training performance 
are better for single-ANN structures, suggesting an additional training 
burden of dual-ANN structures when complex physics are involved. 
However, the validation data loss was lower for the dual-ANN PINN.

Taking both case studies together, it may be concluded that the dual- 
ANN PINN more accurately captured the nonlinear process dynamics 
translating in higher predictive power. Since both structures underwent 

the same training procedures, the dual-ANN PINN predictive advantage 
may be explained by a better structural alignment with the actual pro
cess. Specifically, the dual-ANN PINN assumes static reaction rates that 
depend solely on concentrations, whereas the single-ANN PINN 
dynamically parameterizes the kinetic rates, a formulation that does not 
reflect the true system behavior. In fact, the dual-ANN PINN follows a 
modular design, where neural network models are interconnected based 
on the topological and functional structure of the process under study 
(Thompson and Kramer, 1994). In other words, the dual-PINN structure 
is informed by prior knowledge in a classical hybrid modeling sense, 
providing an additional descriptive advantage in representing the un
derlying process.

4.7. Comparison with hybrid semiparametric modelling

PINNs have been shown to yield lower prediction errors than con
ventional neural networks in several modelling studies (e.g., Bangi et al., 
2022; Moayedi et al., 2024; Velioglu et al., 2025). Only a few studies 

Fig. 4. Training results for case study 2 using a PINN structure (FFNN-S: 6 × 17×17×5 with SiLU, FFNN-R: 1 × 6 × 3 with tanh), trained with learning rate 0.0075, λ 
= 0.5 and K = 515 collocation points, when the model is trained over a partial data set with 9 batch experiments (center and square points of the CCD) (A-D) or over 
the full data set with 15 experiments (full CCD) (E-F). (A) Predicted versus measured X, S, Pt , Pm, V for the partial training set (9 experiments), (B) Predicted versus 
measured X, S, Pt , Pm, V for the testing set (optimal Park and Ramirez (1988) bioreactor with 32.4 g secreted protein production), (C) X, S, Pt , Pm, V physics at the 
training collocation points, (D) X, S, Pt , Pm, V physics at the test data points, (E) Predicted versus measured X, S, Pt , Pm, V when the PINN is trained on the full CCD 
(15 experiments), (F) Predicted versus measured X, S, Pt , Pm, V for the testing set (optimal Park and Ramirez (1988) bioreactor with 32.4 g secreted pro
tein production).

Fig. 5. Loss function evolution as function of training epoch with a learning rate of 0.0075, λ = 0.5 and K/NWS = 1. (A) PINN structure (FFNN-S: 3 × 8 × 8 × 8 × 2, 
FFNN-R: 1 × 5 × 1) for case study 1, (B) PINN structure (FFNN-S:6 × 17×17×5, FFNN-R:1 × 6 × 3) for case study 2.
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compared PINNs and hybrid semiparametric modelling (Yang et al., 
2024; Jul-Rasmussen et al., 2025). It is particularly interesting to 
analyze if both approaches perform differently when exposed to the 
same data and prior knowledge. To assess this, selected dual-ANN PINN, 
hybrid semiparametric and conventional neural network structures 
(without the physics component) were compared for both case studies. 
The FFNN-R structure of the hybrid semiparametric model and the 
FFNN-S structure of the conventional FFNN model were systematically 
evaluated by manual grid search using the same training, validation and 
testing procedures applied to the dual-ANN PINN. Details of perfor
mance metrics are provided in Tables S1 and S2 for case studies 1 and 2 
respectively (Supplementary File 3). The selection of the best model in 

each category was based on the validation loss, whereas the comparison 
of selected best models was based on the test data loss. The case study 1 
test experiment presents a particularly challenging scenario, as the time 
scale was extended to 166 h to assess the models’ ability to perform 
temporal extrapolation. The case study 2 test experiment is equally 
challenging as the models are inputted with the optimal feed rate profile 
(unseen during the training) and tasked with predicting the process 
dynamics that maximizes total secreted protein concentration at the end 
of the cultivation. A summary of the results is presented in Table 1.

In case study 1, the dual-ANN PINN, hybrid semiparametric, and 
conventional FFNN models all achieved the same final training data loss 
(Table 1). However, the hybrid semiparametric model demonstrated 

Fig. 6. Dependency of data and physics losses for different λ values. (A) Selected PINN structure for case-study 1 (FFNN-S: 3 × 8 × 8 × 8 × 2, FFNN-R: 1 × 5 × 1), (B) 
Selected PINN structure for case-study 2 (FFNN-S:6 × 17×17×5, FFNN-R:1 × 6 × 3).
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superior prediction accuracy to that of the PINN (~50 % lower test data 
loss). Fig. (9A, B) further detail the prediction profiles for the test 
experiment of case study 1. Both the dual-ANN PINN and semi
parametric models effectively approximated the growth curve within 
the scatter of the experimental data. In contrast, the conventional FFNN 
severely failed to predict the true dynamic trajectory. When evaluated 
under extended temporal extrapolation conditions, the hybrid semi
parametric model converged to a stable final biomass concentration 
with an 8 % underprediction off-set relative to the true value. The dual- 
ANN PINN displays, however, unstable behaviour, diverging from the 

final biomass concentration over time. This apparent disadvantage of 
the dual-ANN PINN is not incidental as similar behaviour was consis
tently observed across multiple experiments. Furthermore, the hybrid 
semiparametric model demonstrated perfect volume prediction (Fig. 9B) 
because the full physics is embedded in the model, leaving numerical 
integration as the sole source of error. In contrast, the PINN shows an 
increasing error over time, likely due to limitations in the extrapolation 
of the learned dV

dt = F equation. Of note, the conventional FFNN does not 
predict volume as volume data points were not available for training. 
Fig. (9C, D) presents the data loss for all CCD experiments over the 

Fig. 7. Dependency of data and physics losses for different collocation point ratios K/NWS = 1,2,3. (A) Selected dual-ANN PINN structure for case-study 1 (FFNN-S: 
3 × 8 × 8 × 8 × 2, FFNN-R: 1 × 5 × 1), (B) Selected dual-ANN PINN structure for case-study 2 (FFNN-S:6 × 17×17×5, FFNN-R:1 × 6 × 3).
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Fig. 8. Loss ratio (Single-ANN PINN) / (Dual-ANN PINN) for structures with equivalent size. (A) Case-study 1, (B) Case-study 2.

Table 1 
. Comparison of training, validation and testing performance metrics of selected Dual-ANN PINN, conventional FFNN and Hybrid semiparametric models across case 
studies 1 and 2.

Case 
Study

Model FFNN-S FFNN-R Train data 
loss

Cross-Validation data 
loss

Validation data 
loss

Test data 
loss

Nw CPU 
(min)

1 Dual-ANN PINN 3 × 8 × 8 × 8 × 2 1 × 5 × 1 0.0046 0.0054 0.013 0.318 210 109.2
Conventional FFNN‡ 3 × 3 × 1 NA 0.0046 0.0070 168.8 1604.5 16 5.6
Hybrid semiparametric 
*

NA 1 × 5 × 1 0.0046 0.0085 0.007 0.036 16 103.9

2 Dual-ANN PINN 6 × 17×17×5 1 × 6 × 3 0.012 NA 0.133 0.021 548 732.3
Conventional FFNN‡ 6 × 5 × 5 × 4 NA 0.011 NA 0.521 0.327 89 125.2
Hybrid 
semiparametric*

NA 1 × 6 × 3 0.013 NA 0.039 0.012 33 702.0

(‡) The conventional neural network models consisted of a single FFNN-S structure trained with data of measured state variables without the physics loss.
(*) The hybrid semiparametric models followed the general structure of Fig. (1B). The material balance ODEs were inserted directly in the model structure in 
replacement of the FFNN-S, namely Eqs. (7a, b) for case study 1 and Eqs. (8a-e) for case study 2. The reaction kinetics were considered unknown thus described by a 
FFNN-R with the same topology of the selected dual-ANN PINN structure;.
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extended timeframe, confirming that the hybrid semiparametric model 
consistently outperformed the PINN under temporal extrapolation 
conditions. It is worth mentioning that training with a single experiment 
represents an extreme case of data sparsity. Increasing the number of 
training batches to two significantly reduced the hybrid semiparametric 
offset and significantly enhanced the PINN extrapolation performance 
(results not shown).

As for case study 1, the PINN, hybrid semiparametric, and conven
tional FFNN models achieved practically the same final training data 
loss in case study 2, denoting a comparable descriptive power of the 
training data. The prediction accuracy of the Park and Ramirez (1988)
optimal experiment is however very divergent among the 3 models. The 
hybrid semiparametric model achieved the lowest test data loss of 
0.039, followed by the PINN, with a 3.4-fold increase. As expected, the 
conventional FFNN model had the lowest prediction accuracy, showing 
a 13.1-fold increase in the test data loss in relation to the hybrid semi
parametric model. Fig. (10A–F) depict the predicted profiles of state 
variables for the optimal Park and Ramirez (1988) feed rate profile. 
Fig. (10F) shows the piecewise constant optimal feed rate profile (1 h 
step size) that delivers optimal protein production (Pm(15)V(15) =

32.4g at 15 h cultivation time). The hybrid semiparametric model pro
vides a more accurate prediction of the true process dynamics than the 
other approaches. The final prediction of secreted protein production 
was 32.48 g, which is virtually identical to the optimal value of 32.4 g. In 
contrast, the dual-ANN PINN shows significant underperformance 
compared to the hybrid semiparametric model, particularly in the pre
dictions of S, Pt, Pm and V. The final prediction of secreted protein was 
only 28.16 g (13.1 % underprediction). The conventional FFNN showed 

the highest deviations from the true process profiles (as for case study 1, 
the conventional FFNN model was not trained with volume data thus it 
is unable to predict volume). Importantly, the conventional FFNN model 
occasionally predicted negative concentration values of S, Pt and Pm. 
This problem was largely mitigated (except for substrate) in the case of 
the dual-ANN PINN due to the physics regularization during the 
training. Substrate poses a significant challenge because its concentra
tion drops to nearly zero in the final four cultivation hours. The 
dual-ANN PINN could not cope with negative concentrations most likely 
to inaccurate material balance equations extrapolation (inaccuracies in 
the learned physics). The hybrid semiparametric model practically 
eliminated the negative concentrations as the material balance equa
tions are numerically integrated.

5. Discussion

This study presents a comparison of a dual-ANN PINN structure and 
hybrid semiparametric modelling for bioprocesses, evaluated across two 
case studies with varying levels of mechanistic complexity. The 
comparative analysis elucidates the strengths and limitations of each 
modelling paradigm, particularly under data-scarce regimes and 
extrapolative tasks. In case study 1, which involved logistic microbial 
growth governed by relatively simple dynamics, both the dual-ANN 
PINN and hybrid semiparametric models achieved excellent predictive 
performance within the data domain. The dual-ANN PINN effectively 
inferred unobserved volume dynamics using only biomass measure
ments, showcasing the potential of embedding physical knowledge 
within the loss function to predict unobserved target variables. 

Fig. 9. Compares the dual-ANN PINN (FFNN-S: 3 × 8 × 8 × 8 × 2, FFNN-R: 1 × 5 × 1) and hybrid semiparametric (ODE(2); FFNN-R: 1 × 5 × 1) extrapolation 
capacity for case study 1. (A) Biomass prediction for the test experiment over an extended timeframe 0–166 h, (B) Volume prediction for the test experiment over an 
extended timeframe 0–166 h, (C) Biomass and volume data loss distribution across all (training + validation + testing) batches under extended temporal extrap
olation (0 - 166 h).
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However, as shown in Fig. 9, the hybrid semiparametric model consis
tently outperformed the dual-ANN PINN in extended temporal extrap
olation, benefiting from the direct integration of governing equations in 
the model structure.

Case study 2 posed a significantly more complex scenario, involving 
five interacting state variables, nonlinear reaction kinetics, and time- 
varying control inputs. Under these conditions, the performance of the 
dual-ANN PINN deteriorated notably, particularly in extrapolating the 
dynamics of secreted protein (Pm) and total protein (Pt). The hybrid 
semiparametric model again outperformed the dual-ANN PINN, offering 
lower training and testing loss values and more accurate predictions 
across all state variables. The dual-ANN PINN struggled to generalize 
effectively to unseen feed profiles, a result that is consistent with liter
ature studies that reported PINN shortcomings in capturing nonlinear 

dynamics due to gradient pathologies and the stiffness in the optimi
zation process, where different parts of the solution space vary on 
different scales (Wang et al., 2021, 2022). Li and Feng (2022) empha
sized the importance of balancing physics and data losses during 
training, a challenge that our study addressed through manual tuning of 
the weighting parameter λ, as discussed in Section 4.4. By contrast, the 
hybrid semiparametric model maintained stable and accurate perfor
mance across both case studies. Its architecture, that incorporates dif
ferential equations directly in the model structure, enabled transparent 
integration of mechanistic knowledge, reduced training complexity, and 
improved convergence. Similar results were reported by Jul-Rasmussen 
et al. (2025).

Unsurprisingly, the conventional FFNN consistently underperformed 
in both case studies due to its lack of mechanistic structure, displaying 

Fig. 10. Compares the selected best dual-ANN PINN, hybrid semiparametric, and conventional FFNN models (Table 1) for the Park and Ramirez (1988) optimal 
control experiment (test data set). (A) Biomass overtime, (B) Substrate overtime, (C) Total protein overtime, (D) Secreted protein overtime, (E) Volume overtime, (F) 
Pricewise constant optimal feed rate profile.
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high variance and poor generalization comparatively to the dual-ANN 
PINN and hybrid semiparametric models. These findings are supported 
by the recent work of Velioglu et al. (2025), who proposed a 
differential-algebraic equation-based heuristic to determine whether a 
PINN can estimate hidden states in partially known systems. Their re
sults demonstrated the improved extrapolation and state reconstruction 
capabilities of PINNs compared to conventional neural networks, even 
in the absence of full constitutive equations. This aligns with the present 
study where the dual-ANN PINN has accurately extrapolated beyond the 
training domain for unobserved states such as the case of unmeasured 
volume. However, this extrapolative advantage is not guaranteed in 
more complex systems as highlighted in case study 2.

Recent methodological contributions further insight into PINN lim
itations. Subramanian et al. (2023) proposed adaptive collocation 
schemes that target high-error regions to improve physics learning and 
physics extrapolation. While the present study did not adopt adaptive 
resampling, a stochastic collocation strategy was employed that regen
erated collocation points at each training epoch across the bounded state 
space. This approach proved effective for enforcing broad physical 
coverage and stabilizing the physics loss. To avoid overfitting, Gaussian 
Process (GP) smoothening strategies were suggested by Bajaj et al. 
(2023). This study followed conventional approaches, for instance, case 
study 1 employed cross-validation, while case study 2 used stochastic 
regularization via minibatch size data resampling. Furthermore, the 
present study relied on standard automatic differentiation, aligned with 
conventional PINN methods, but results from Chiu et al. (2022) sug
gested that hybrid differentiation strategies by coupled 
automatic-numerical differentiation method (Can-PINN) may enhance 
computational efficiency and accuracy in solving complex physics sys
tems, an avenue worth exploring in future work.

Overall, this study highlights the nuanced capabilities of each 
modelling framework. Hybrid semiparametric models offer high accu
racy and stability within well-defined process regimes. This is particu
larly the case when the backbone of the model is precisely defined by a 
mechanistic equation, such as Eqs. (1a,b) for bioreactor problems. A key 
advantage is that the extrapolation of physics is not endangered by 
training limitations. The requirement of numerical integration may, 
however, constitute a limitation, particularly for stiff ODE systems. 
PINNs also have high potential to learn from data and physics simulta
neously and may be more flexible for problems with partially known 
mechanistic knowledge. They show a clear advantage over conventional 
ANNs, but their multi-objective training is far more complex. While 
PINNs are not affected by the stiffness issues associated with ODEs in 
hybrid semiparametric models, their main drawback lies in the extrap
olation of prior physical equations. This extrapolation is highly sensitive 
to the training methodology used, which can significantly impact the 
reliability of PINN predictions. The choice between these paradigms 
should thus be dictated by the modelling objective whether high-fidelity 
interpolation or robust extrapolation is required, by the nature of 
available process knowledge and encountered numeric implementation 
challenges.

6. Conclusion

This study compared a dual-ANN PINN, hybrid semiparametric, and 
conventional ANN structures for generic bioreactor modelling across 2 
case studies. A key aspect of the dual-ANN PINN was the decoupling of 
dynamic state variables and static reaction kinetics parameterization, 
which consistently led to enhanced generalization capacity. In line with 
previous studies, our results highlight that PINNs, through the incor
poration of physics in the loss function, exhibit stronger extrapolation 
capabilities than conventional ANNs, particularly in scenarios of high 
data sparsity. Hybrid semiparametric models, which embed the physics 
equations directly into the model structure, generally offer better pre
dictive accuracy and more stable convergence than the dual-ANN PINN 
approach, particularly for high-dimensional nonlinear dynamical 

systems with time-varying control inputs. The findings highlight that, 
although PINN architectures offer a more flexible way to incorporate 
partial prior knowledge and data, their performance is quite sensitive to 
system complexity, hyperparameter selection, and potential training 
instabilities. Since they do not require the integration of ODEs they are 
well-suited for process control applications that require fast model 
simulations. Hybrid semiparametric models, in contrast, inherit all the 
numerical challenges associated with the mechanistic equations. This 
can result in infeasible or stiff systems that require significantly longer 
simulation times and slower training, ultimately limiting practical 
applicability. The dual-ANN PINN framework struggled with time- 
varying and batch-varying control inputs (feed rates) due to physics- 
based extrapolation errors beyond the training domain. In contrast, 
explicitly incorporating process control inputs into the mechanistic 
component of the hybrid semiparametric model can lead to more robust 
process control designs and represents a significant advantage of this 
approach. The choice between the two hybrid modeling methods ulti
mately depends on carefully weighing their respective advantages and 
disadvantages for the specific bioreactor problem at hand.
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